Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 29(45): 68460-68475, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35543786

RESUMEN

In the framework of the Italian Special Network for Mercury (ISNM) "Reti Speciali", a sampling campaign to monitor atmospheric mercury (Hg) was carried out at Monte Sant'Angelo (MSA). This is a coastal monitoring station in the Apulia region, representative of the Southern Adriatic area, within the Mediterranean basin. This work presents continuous Gaseous Elemental Mercury (GEM) measurements over about three years at MSA, using the Lumex RA-915AM mercury analyzer. The aim was to obtain a dataset suitable for the analysis of Hg concentrations in terms of source and transport variation. Diurnal cycles of GEM were evaluated to observe the influence of local atmospheric temperature and wind speed on potential re-emissions from surrounding sea and soil surfaces. Data were also analyzed in terms of long-range transport, using backward trajectory cluster analysis. The spatial distribution of potential sources, contributing to higher measured GEM values, was obtained employing Potential Source Contribution Function (PSCF) statistics. The influence of major Hg anthropogenic point sources, such as mining activities and coal-fuel power plants, both regionally and continentally, from mainland Europe, was observed. The role of the vegetation GEM uptake in modulating the seasonal GEM variability was also investigated. The potential of wildfire influence over the highest detected GEM levels was further examined using active fire data and the evaluation of the vegetation dryness index during the selected episodes.


Asunto(s)
Contaminantes Atmosféricos , Mercurio , Contaminantes Atmosféricos/análisis , Carbón Mineral/análisis , Monitoreo del Ambiente , Mercurio/análisis , Estaciones del Año , Suelo
2.
Sci Total Environ ; 761: 143271, 2021 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-33183815

RESUMEN

The summer of 2017 in the Calabria Region (South Italy) was an exceptional wildfire season with the largest area burned by wildfires in the last 11 years (2008-2019). The equivalent black carbon (EBC) and carbon monoxide (CO) measurements, recorded at the high-altitude Global Atmosphere Watch (GAW) Monte Curcio (MCU) regional station, were analyzed to establish the wildfires' impact on air quality, human health, and the ecosystem. A method was applied to identify the possible wildfires that influenced the air quality based on the integration of fire data (both satellite and ground-based) and the high-resolution WRF-HYSPLIT trajectories. The satellite-based fires applied to WRF-HYSPLIT with 10 km of spatial resolution allowed us to establish that for 52.5% of total cases, wildfires were located outside the Calabria Region, and they were influenced by long-range transport. Nonetheless, the impact on human health, qualitatively evaluated in terms of passively smoked cigarettes (PSC) corresponding to the EBC, was greater when wildfires were local. Indeed, for wildfires located mainly in Calabria, the equivalent PSC ranged from 2.75 to 11.08. This maximum PSC value was close to the daily number of smoked cigarettes in Calabria (approximately 12.4). Even if this analogy does not imply a proportional effect between the estimated number of cigarettes smoked and the effective wildfire EBC exposure, this result suggests that wildfire emissions may have negative effects on people's health. Moreover, a focus on the Calabria Region was conducted using high-resolution ground-based GPS and higher resolution WRF-HYSPLIT back-trajectories (2 km) to measure wildfires. The validity of the methodology was confirmed by the EBC and CO positive correlation with the ratio between the identified ground-based burned areas and the distance from the sampling station. Moreover, the impact on the ecosystem was studied by analyzing the land vegetation loss due to the wildfires that contributed to air quality reduction at the MCU station. A total of more than 1679 ha of vegetation burned, the main losses comprising forests and shrubland.

3.
Atmos Chem Phys ; 17: 1881-1899, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-30079082

RESUMEN

Mercury (Hg) emissions from biomass burning (BB) are an important source of atmospheric Hg and a major factor driving the interannual variation of Hg concentrations in the troposphere. The greatest fraction of Hg from BB is released in the form of elemental Hg(Hg(g)0) . However, little is known about the fraction of Hg bound to particulate matter (HgP) released from BB, and the factors controlling this fraction are also uncertain. In light of the aims of the Minamata Convention to reduce intentional Hg use and emissions from anthropogenic activities, the relative importance of Hg emissions from BB will have an increasing impact on Hg deposition fluxes. Hg speciation is one of the most important factors determining the redistribution of Hg in the atmosphere and the geographical distribution of Hg deposition. Using the latest version of the Global Fire Emissions Database (GFEDv4.1s) and the global Hg chemistry transport model, ECHMERIT, the impact of Hg speciation in BB emissions, and the factors which influence speciation, on Hg deposition have been investigated for the year 2013. The role of other uncertainties related to physical and chemical atmospheric processes involving Hg and the influence of model parametrisations were also investigated, since their interactions with Hg speciation are complex. The comparison with atmospheric HgP concentrations observed at two remote sites, Amsterdam Island (AMD) and Manaus (MAN), in the Amazon showed a significant improvement when considering a fraction of HgP from BB. The set of sensitivity runs also showed how the quantity and geographical distribution of HgP emitted from BB has a limited impact on a global scale, although the inclusion of increasing fractions HgP does limit Hg(g)0 availability to the global atmospheric pool. This reduces the fraction of Hg from BB which deposits to the world's oceans from 71 to 62 %. The impact locally is, however, significant on northern boreal and tropical forests, where fires are frequent, uncontrolled and lead to notable Hg inputs to local ecosystems. In the light of ongoing climatic changes this effect could be potentially be exacerbated in the future.

4.
Atmos Chem Phys ; 16(18): 11915-11935, 2016 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-30245704

RESUMEN

Long-term monitoring of data of ambient mercury (Hg) on a global scale to assess its emission, transport, atmospheric chemistry, and deposition processes is vital to understanding the impact of Hg pollution on the environment. The Global Mercury Observation System (GMOS) project was funded by the European Commission (http://www.gmos.eu) and started in November 2010 with the overall goal to develop a coordinated global observing system to monitor Hg on a global scale, including a large network of ground-based monitoring stations, ad hoc periodic oceanographic cruises and measurement flights in the lower and upper troposphere as well as in the lower stratosphere. To date, more than 40 ground-based monitoring sites constitute the global network covering many regions where little to no observational data were available before GMOS. This work presents atmospheric Hg concentrations recorded worldwide in the framework of the GMOS project (2010-2015), analyzing Hg measurement results in terms of temporal trends, seasonality and comparability within the network. Major findings highlighted in this paper include a clear gradient of Hg concentrations between the Northern and Southern hemispheres, confirming that the gradient observed is mostly driven by local and regional sources, which can be anthropogenic, natural or a combination of both.

5.
Environ Sci Process Impacts ; 17(8): 1482-91, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26174740

RESUMEN

The overall goal of the on-going Global Mercury Observation System (GMOS) project is to develop a coordinated global monitoring network for mercury, including ground-based, high altitude and sea level stations. In order to ensure data reliability and comparability, a significant effort has been made to implement a centralized system, which is designed to quality assure and quality control atmospheric mercury datasets. This system, GMOS-Data Quality Management (G-DQM), uses a web-based approach with real-time adaptive monitoring procedures aimed at preventing the production of poor-quality data. G-DQM is plugged on a cyberinfrastructure and deployed as a service. Atmospheric mercury datasets, produced during the first-three years of the GMOS project, are used as the input to demonstrate the application of the G-DQM and how it identifies a number of key issues concerning data quality. The major issues influencing data quality are presented and discussed for the GMOS stations under study. Atmospheric mercury data collected at the Longobucco (Italy) station is used as a detailed case study.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , Monitoreo del Ambiente , Internet , Mercurio/análisis , Atmósfera/química
6.
Environ Sci Pollut Res Int ; 21(6): 4044-62, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24151024

RESUMEN

The Mediterranean basin, because of its semi-enclosed configuration, is one of the areas heavily affected by air pollutants. Despite implications on both human health and radiative budget involving an increasing interest, monitoring databases measuring air pollution directly over this area are yet relatively limited. Owing to this context, concentrations of fine (PM2.5) and coarse (PM2.5-10) particles along with other ancillary data, such as ozone levels and meteorological parameters, were measured during six cruise campaigns covering almost the whole Mediterranean basin. Elemental composition of both PM2.5 and PM2.5-10 was also determined to identify specific tracers for different classes of particles that can be found in the Mediterranean atmosphere. Outcomes resulting from the integration of a preliminary qualitative examination with a more quantitative analysis, based on receptor modelling, suggested that European continental influence, Saharan dust outbreaks, wildfire events, sea spray and fossil fuel combustion were the leading causes of the aerosol-ozone variations within the Mediterranean basin. Shipping emissions, consisting in both local harbours and maritime traffic across the basin, were also tested using the marker ratio of V/Ni. Peak values observed for coarse fraction have shown to be driven by the occurrence of African dust events. Considering the major influence of Continental pollution and wildfire events, the spatial variability resulted in larger fine particle concentrations and higher ozone levels over the Eastern Mediterranean side in comparison to the Western one.


Asunto(s)
Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Ozono/análisis , África del Norte , Contaminación del Aire/estadística & datos numéricos , Atmósfera/química , Polvo/análisis , Humanos , Mar Mediterráneo , Material Particulado/análisis , Estaciones del Año , Navíos , Análisis Espacio-Temporal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...